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Abstract: 1	

Space-borne observations of CO2 from the Orbiting Carbon Observatory-2 are used to 2	

characterize the response of the tropical atmospheric CO2 concentrations to the strong El Niño 3	

event of 2015-2016. Correlations between atmospheric CO2 growth rate and the El Niño 4	

Southern Oscillation have been well known; however, the magnitude of the correlation and the 5	

timing of the responses of oceanic and terrestrial carbon cycle remain poorly constrained in 6	

space and time. Here we use space-based CO2 observations to confirm that the tropical Pacific 7	

Ocean does play an early and important role in modulating the changes in atmospheric CO2 8	

concentrations during El Niño events – phenomenon inferred but not previously observed due to 9	

lack of high-density, broad-scale CO2 observations over the Tropics. 10	

 11	

One Sentence Summary: 12	

NASA’s OCO-2 mission provides a first-hand look at the space-time evolution of tropical 13	

atmospheric CO2 concentrations in response to the 2015-2016 El Niño   14	
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Main Text: 1	

El Niño Southern Oscillation, or ENSO, is the dominant mode of tropical climate 2	

variability on interannual to decadal timescales (1-5) and is correlated with large inter-annual 3	

variability in global atmospheric CO2 concentrations (6-19). Studying the response of the carbon 4	

cycle to this natural climate phenomenon is critical to understand and quantify the sensitivity of 5	

the carbon cycle to climate variability, and by extension to climate generally (20). Although the 6	

ENSO cycle originates in the equatorial Pacific, its impact on the carbon cycle is felt globally 7	

due to its regional teleconnections (22-23) and influences on atmospheric and ocean circulation, 8	

precipitation, temperature, and fire emissions (1, 24-26). Partitioning the response of the 9	

constituent components of the carbon cycle to a complete El Niño event has been challenging 10	

because of the limited number of CO2 observations over the tropical land and ocean regions.  11	

Observations of atmospheric CO2 from space provide a global view of the carbon cycle 12	

that can be used to describe phenomena that have been previously pieced together from sparse in 13	

situ data. NASA’s Orbiting Carbon Observatory-2 (OCO-2) mission was successfully launched 14	

on July 2, 2014 and started providing science data in early September 2014 (70). Within the first 15	

two years of operation of the OCO-2 mission, a major El Niño (warm phase of the ENSO) 16	

occurred (27-30). We provide an approach for studying the temporal sequence of El Niño-17	

induced changes in global CO2 concentrations using observations from the OCO-2 mission that 18	

are validated with the Tropical Atmosphere Ocean (TAO) mooring CO2 data. We see a response 19	

from the tropical Pacific Ocean during the early stages of an El Niño event and a lagged (and 20	

much larger) terrestrial signal as the El Niño reaches maturity.  21	

El Niño and the global carbon cycle 22	
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Correlations between the atmospheric CO2 growth rate and El Niño activity have been 1	

reported since the 1970s (6-8, 31-32), although the magnitude and timing of the responses of the 2	

ocean and terrestrial components remain poorly constrained (33). Here, the word terrestrial 3	

includes both changes in biospheric productivity (respiration and photosynthesis) as well as 4	

biomass burning (fires). Following previous strong El Niño events (for example, the 1982-1983 5	

and 1997-1998 El Niño events), methods for measuring the atmospheric CO2 response to ENSO 6	

were based on in situ atmospheric CO2 observations at a handful of surface stations that transect 7	

the tropical Pacific, including Mauna Loa, Christmas Island and American Samoa (8, 34) as well 8	

as shipboard transect measurements (12, 35-36). The annual growth rate of atmospheric CO2 9	

measured at these remote stations and other sites around the globe show remarkable correlation 10	

with ENSO indices, with a rapid increase in atmospheric CO2 associated with the late stage of an 11	

El Niño event (19, 37). The ocean response to El Niño events is based on studies looking at in 12	

situ observations, for example, surface ocean pCO2 observations from ships of opportunity (12), 13	

moorings (38-39), or targeted field campaigns during El Niño events (9-10, 40-41), and a variety 14	

of mechanistic ocean models (24, 52, 54, 61, 65, 67).  15	

The overall increase in the release of CO2 to the atmosphere during strong El Niño events 16	

has been attributed to a decrease in biospheric uptake of CO2 (e.g., due to drying of tropical land 17	

regions and an increase in plant and soil respiration) combined with enhanced fire emissions. In 18	

recent years, this has led to a growing body of literature (42-49) concluding that ENSO-mediated 19	

variability in tropical net land primary productivity is what primarily influences the atmospheric 20	

CO2 growth rate. A handful of studies (25, 50-51) have disputed any consistent or coherent 21	

response from the land component during El Niño events, thus highlighting the high level of 22	

uncertainty and disagreement within the carbon cycle community.  23	
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The El Niño-CO2 signature should have a significant tropical Pacific Ocean component 1	

as well, with opposite sign to the terrestrial response (10, 13, 33). During strong El Niño events, 2	

there is a large-scale weakening of the easterly trade winds and suppression of eastern equatorial 3	

Pacific upwelling (indicated by a deeper thermocline) that reduces the supply of cold, carbon-4	

rich waters to the surface (Fig. 1). This reduces the usual strong outgassing of CO2 from this 5	

region (52-67), typically on the order of ~0.4–0.6 PgC yr-1 to the atmosphere, by ~40-60% 6	

during an El Niño event (9-12, 33, 36, 60, 73). If net fluxes were to remain constant elsewhere, 7	

these substantial net air-sea CO2 anomalies should lead to a reduction in the growth rate of 8	

atmospheric CO2, at least during the early stages of El Niño.   9	

Understanding these variations in atmospheric CO2, the timing of these variations and the 10	

underlying processes that cause them have been of great interest within the carbon cycle 11	

community (1, 10-13, 15, 20, 33, 50). Integrating information from ocean- and atmosphere-based 12	

estimates, and modeling studies, we now know that it is the combined and opposite effect of 13	

ocean and terrestrial responses, which contribute to El Niño-related variations in atmospheric 14	

CO2 (33). What remain controversial though are the timing of the ocean response and a precise 15	

quantification of its role. This is of crucial importance because typically the interannual 16	

variability (IAV) in the growth rate of atmospheric CO2 is used to constrain the climate 17	

sensitivity of land carbon fluxes (ϒLT) (20-21); however, if a component of the IAV is being 18	

modified by ocean fluxes, then these inferences of ϒLT need to be reconsidered.  19	

 Because of the few surface CO2 monitoring stations over the center of action (i.e., 20	

tropical Pacific Ocean), it has been challenging to directly observe the timing and changes in flux 21	

of CO2 from the ocean to the atmosphere that affect the atmospheric CO2 growth rate during an 22	

El Niño event. Efforts to analyze the data from distant measurement locations tend to identify the 23	
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enhanced CO2 fluxes from the terrestrial carbon cycle, which dominate during the later stages of 1	

El Niño. The high-density, broad-scale observations of CO2 from OCO-2 provide a valuable tool 2	

to partition the ocean and terrestrial carbon cycle responses to El Niño.  3	

Time series of XCO2 anomalies during the 2015-2016 El Niño  4	

OCO-2 observations describe the column-averaged CO2 dry air mole fraction (XCO2).  5	

More details regarding the OCO-2 mission, data features, XCO2 retrievals, etc. are provided in the 6	

Supplementary Materials, and are available in (69) and (70) while validation of XCO2 via 7	

comparisons to a ground-based network are provided in (71).  8	

El Niño events are identified by warm sea surface temperature anomalies in precise 9	

regions of the tropical Pacific Ocean, with the most commonly used being the Niño 3.4 region 10	

(5°S-5°N, 170°W-120°W). Figs. 2A and 2B show the trend in XCO2 anomaly (90) for the Niño 11	

3.4 region and its temporal evolution relative to two ENSO indices (91), including the Oceanic 12	

Niño Index (ONI - derived from sea surface temperature anomalies in the Niño 3.4 region) and 13	

the Southern Oscillation Index (SOI - derived from observed sea level pressure differences 14	

between Tahiti and Darwin, Australia). The 2015-2016 El Niño began around March 2015 and 15	

reached its peak over the Central Pacific between November 2015 and January 2016 (30). The 16	

XCO2 anomaly (Fig. 2B) shows two distinct periods over the entire El Niño event: (a) 17	

Development phase of El Niño (Spring-Summer 2015) – we argue that the negative XCO2 18	

anomaly is due to a reduction in local CO2 outgassing from the tropical Pacific Ocean, and (b) 19	

Mature phase of El Niño (Fall 2015 onwards) – we argue that the positive trend in XCO2 anomaly 20	

reflects an increase in atmospheric CO2 concentrations due to terrestrial sources (i.e., 21	

combination of reduced vegetation uptake across pan-tropical regions and enhanced biomass 22	

burning emissions from SE Asia and Indonesia). The time series in Fig. 2B shows the space-23	
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based CO2 dataset documenting the response of the carbon cycle (both oceanic and terrestrial) 1	

during an entire El Niño event, capturing both the development and the mature phase and the 2	

transition between those two. The timing of the OCO-2 launch was extremely fortuitous in this 3	

regard. 4	

Deriving the XCO2 anomalies require observations taken by both NASA’s OCO-2 and the 5	

Japan Aerospace Exploration Agency’s (JAXA) Greenhouse Gases Observing Satellite 6	

(GOSAT) (68) mission. The short OCO-2 record makes it impossible to fit a long-time series and 7	

calculate anomalies, and hence data from the GOSAT mission (operating since January 2009) 8	

was utilized to generate the XCO2 climatology. The OCO-2 team retrieved XCO2 from the first 7 9	

years of the GOSAT observations using the same retrieval algorithm that generated the OCO-2 10	

data product (90). Continuous global coverage from these two missions allows us to stitch 11	

together a long-time series of XCO2 over remote regions, such as the tropical Pacific Ocean (Figs. 12	

S1-S2). However, utilizing two data sources, i.e., GOSAT and OCO-2, can incur errors in the 13	

analyses due to changes in the two instruments, their observing strategies and sampling density. 14	

Fig. 2B also illustrates the corresponding uncertainty in our analyses. The uncertainty is 15	

calculated using an ensemble technique (Section C in Supplementary Materials) and further 16	

brings out the two phases in the time series of the Niño 3.4 XCO2 anomaly – ±0.3 ppm 17	

uncertainties during the El Niño development phase with both the upper and lower bounds below 18	

the zero line, and larger uncertainties of ±0.5 ppm during the mature phase of the El Niño event. 19	

These larger uncertainties during the latter stages of the El Niño illustrate the challenge in 20	

attributing the changes in XCO2 anomalies to the competing, and often opposing, signals from the 21	

ocean and the terrestrial components of the carbon cycle. 22	
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Attributing the two observed phases of XCO2 anomalies to the ocean and the terrestrial 1	

response  2	

Our argument for the two observed phases in the XCO2 anomaly time series is supported 3	

by complementary data sources. The ocean response is corroborated by sea surface pCO2 4	

observations from an in situ network of autonomous CO2 systems on the TAO moored buoy 5	

array (9, 38, 72). Data are not directly comparable to atmospheric XCO2 as they describe CO2 6	

variations at the ocean surface. The trend of the difference between the sea surface and 7	

atmospheric CO2 (ΔpCO2), however, does capture typical El Niño signatures. For example, Fig. 8	

2C illustrates data from one of the moored buoys in the Niño 3.4 region (0°, 170°W), which 9	

shows decreasing ΔpCO2 over the spring and near-zero ΔpCO2 by December 2015. A 10	

suppression in the upwelling of CO2-rich waters caused by weakening of the easterly trade winds 11	

leads to a reduction in the surface ocean carbon content, which in turn leads to a decline in the 12	

magnitude of sea-to-air CO2 fluxes. The flux estimates at this buoy location are 1.35 ± 0.21 (1σ) 13	

gC m-2 month-1 during the November 2014 to February 2015 period (i.e., non El Niño 14	

conditions) that gradually decrease to 0.087 ± 0.083 (1σ) gC m-2 month-1 between November 15	

2015 and February 2016 (i.e., El Niño conditions). This indicates a near-total shutdown of sea-16	

to-air flux during Boreal Winter 2015-2016 relative to the neutral 2014-2015 Boreal Winter. 17	

Previous studies focusing on the tropical Pacific Ocean have reported flux reductions of ~40-18	

60% over the entire basin (9-12, 33, 36, 60, 73). Atmospheric transport model calculations with a 19	

prescribed set of flux patterns and comparing to the observed XCO2 anomalies (Section A in 20	

Supplementary Materials) suggest a flux reduction of ~26-54%.  21	

While these numbers are roughly similar, we do recognize the limitation in comparing 22	

flux estimates from one point (namely the TAO location at 0°, 170°W) to flux estimates for the 23	
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entire Niño 3.4 region and/or the tropical Pacific Ocean from previous studies. Large-scale 1	

changes in the physical and biogeochemical dynamics during El Niño events result in significant 2	

spatial and temporal variability in the surface pCO2 distributions (12, 62, 65). Additionally, these 3	

spatial variations and their seasonal progression are uniquely tied to each El Niño event; thus, 4	

different flavors of El Niño events and/or shifts in the El Niño phenomena (86-88) will influence 5	

the evolution of the seasonal cycle of pCO2 and air-sea CO2 fluxes over the region. For the 2015-6	

2016 El Niño event, the TAO buoy at 0°, 170°W lay closest to the edge of the warm pool and 7	

registered the first response to the onset of El Niño conditions. As observations from other TAO 8	

locations (92) are becoming available, it is evident that in the eastern part of the basin there was 9	

an overall suppression of the outgassing CO2 source but with large variability in pCO2. Data 10	

synthesis and modeling work with these and other in situ observations are ongoing to quantify 11	

the exact magnitude of ocean CO2 fluxes over different tropical Pacific regions during the 2015-12	

2016 El Niño.   13	

The second phase in the XCO2 anomaly time series is driven by the terrestrial component 14	

of the carbon cycle, and the transport of this signal to the remote Niño 3.4 region. The anomalous 15	

increase in CO2 can be attributed to a combination of terrestrial sources, including a reduction in 16	

the global biospheric uptake, increases in soil and plant respiration and enhanced fire emissions. 17	

In fact, the impact of enhanced fire emissions and their regional progression was a well-studied 18	

feature following the strong 1997-1998 El Niño (26, 43, 74-76). For the 2015-2016 El Niño 19	

event, strong correspondences between XCO2 from OCO-2 and the carbon monoxide (CO) total 20	

column anomalies from the Measurements of Pollution in the Troposphere (MOPITT) 21	

instrument on the NASA Terra platform, are evident over the tropical Pacific Ocean, especially 22	

during Fall 2015 (Fig. 2D). We conjecture that these CO total column anomalies are 23	
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representative of the emissions from the 2015–2016 Indonesian peat fires (77-80), which were 1	

advected into the tropical Pacific region. El Niño-related changes in the Walker circulation (i.e., 2	

westerly winds) and the slightly more southern than normal positioning of the Inter Tropical 3	

Convergence Zone (ITCZ) (81) may allow emissions from the Indonesian peat fires to carry over 4	

into this region (Fig. S4). It is interesting to note from Figs. 2B and 2D that the positive increase 5	

in XCO2 anomaly actually leads the fire signals by 1-2 months. This indicates that the release of 6	

carbon flux resulting in an increase in CO2 concentrations is only partially pyrogenic; reduced 7	

vegetation uptake due to droughts is a significant contributor, and quite possibly the initial cause 8	

of the increase in XCO2 anomaly.  9	

Isolating the observed negative XCO2 anomaly to an ocean signal 10	

The time dependence of the XCO2 anomalies during the 2015-2016 El Niño indicate that 11	

the initial decrease in atmospheric CO2 is due to suppression of upwelling in the tropical Pacific. 12	

This early negative response is subsequently offset by a large positive anomaly due to the 13	

terrestrial component. Assuming no significant interannual changes elsewhere in the global 14	

ocean, we can further confirm our argument by a comparison of the XCO2 anomaly in the Niño 15	

3.4 region with the global XCO2 anomaly (Fig. 4A). By differencing the far-field effect from the 16	

local signal, the influence of the reduction in CO2 outgassing from the tropical Pacific Ocean is 17	

clearly visible during the onset phase of El Niño. The peak reduction registered over the Niño 3.4 18	

region relative to the global XCO2 anomalies is 0.35 ppm in June 2015, which occurs a couple of 19	

months after the initiation of the El Niño event. Lag correlation of the Niño 3.4 XCO2 anomalies 20	

against the ONI index indicate that the highest positive correlation occurs when the 21	

concentration-related anomalies lag the SST-related anomalies by 1-2 months (93) (Fig. S8). The 22	

time lag relationship can be precisely quantified during the onset phase of El Niño, but it is much 23	
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more difficult to interpret during the succeeding El Niño stages when any reduction in CO2 from 1	

decreased equatorial upwelling is masked by the signal from terrestrial processes. Thus, if it were 2	

not for the reduction in outgassing from the ocean, the impact from the terrestrial sources would 3	

likely be larger. Our analysis confirms the findings from (13) that the slowdown of atmospheric 4	

CO2 increase during the early stages of an El Niño is indeed related to the decreased sea-to-air 5	

flux of CO2 in the tropical Pacific Ocean. The coverage from the OCO-2 mission has enabled us 6	

to verify this hypothesis and monitor its temporal evolution using real atmospheric CO2 7	

observations. 8	

The early stage negative XCO2 anomaly is unique to the tropical Pacific Ocean and is not 9	

influenced by global, terrestrial or large-spatial scale fluxes. Due to the large interhemispheric 10	

gradients in CO2, typical variability in tropical CO2 concentrations can be an aliasing of 11	

terrestrial processes occurring at higher latitudes. In order to confirm that the recovered ocean 12	

signal in the XCO2 anomaly is unique to the tropical Pacific Ocean, we examined three other 13	

ocean regions - the subtropical North Pacific (20°-30°N, 120°-170°W), the subtropical South 14	

Pacific (20°-30°S, 120°-170°W) and the tropical Atlantic Ocean (5°N -5°S, 5°-35°W). Fig. 3 15	

shows the specific regions (aside from Niño 3.4) that we have analyzed, and each of which assist 16	

us to reject alternative hypotheses. Non-zero differences in XCO2 anomalies between these and 17	

the Niño 3.4 region (Fig. 4) indicate that the trend observed over the tropical Pacific Ocean is 18	

distinct from other ocean basins. This makes intuitive sense from our mechanistic understanding 19	

as well - while large impacts of ENSO on the sea-to-air CO2 flux in the tropical Pacific Ocean 20	

are expected, studies have shown minute and delayed influence of the ENSO modes on the 21	

variability of carbon fields in the tropical Atlantic Ocean (66, 82-83).  22	

Perspective 23	
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The strong El Niño in 2015-2016 caused a reduction in the magnitude of CO2 outgassing 1	

from the tropical Pacific Ocean. These changes, albeit of varying magnitude, extended over a 2	

large portion of the tropical Pacific, and impacted the large-scale modulation of the physical 3	

processes responsible for the CO2 efflux from this region. Almost all observing networks (i.e., 4	

OCO-2, TAO, etc.) were aided by the strength of this signal. However, OCO-2 provided a more 5	

comprehensive view of the tropical Pacific Ocean signal than previous observing networks given 6	

its: (a) greater coverage and more frequent sampling than in situ networks, and (b) improved 7	

resolution and precision than earlier space-based instruments. For example, GOSAT, like OCO-2 8	

is sensitive to the total CO2 column, but has lower precision (2 ppm single sounding random 9	

error for GOSAT vs. 0.5 ppm for OCO-2) and lower sampling density (100x less soundings). 10	

The immediate next step will be to fold in these observations into an inverse modeling 11	

framework (13, 15, 50, 56) to infer the underlying net fluxes between the ocean and atmosphere 12	

and the terrestrial biosphere and the atmosphere. This would help establish the real benefit of 13	

OCO-2, especially against the backdrop of previous studies that had to rely on sparse 14	

atmospheric constraint to infer changes in CO2 surface fluxes during El Niño events. 15	

Based on OCO-2 data alone, however, we cannot quantitatively discriminate the relative 16	

roles of reduction in biospheric activity uptake due to a warmer and drier climate in 2015 versus 17	

enhanced fire emissions. While we can quantify the temporal response of the ocean versus the 18	

terrestrial component and qualitatively observe the gradients in the response of different tropical 19	

Pacific Ocean regions (Fig. 5), it is much more challenging to discriminate the contribution of 20	

fire emissions and the delayed response of the terrestrial biosphere to El Niño-induced changes 21	

in weather patterns. The impact of ENSO is typically felt by the terrestrial biosphere over several 22	

months to a year after the actual event. Studies on both progressions of droughts (84) and fires 23	
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(26) during an El Niño cycle have shown a hysteresis in the Earth system’s response to changes 1	

in temperature and precipitation patterns. Analyses using ancillary data sources such as solar-2	

induced fluorescence (SIF), bottom-up model simulations and inverse modeling calculations are 3	

typically necessary to quantify the partitioning of the terrestrial carbon fluxes (reduction in 4	

biospheric uptake vs. increase in fire emissions) as has been pursued in a companion study (85). 5	

Our study provides a short-term perspective on the potential of CO2 observations from 6	

space for unraveling more complex relationships of carbon sources and sinks in the future. A 7	

longer time series of observations will enable testing more hypotheses such as the possibility of 8	

regionally dependent gradients in air-sea CO2 fluxes in the tropical Pacific, or adding data to 9	

support biogeochemical theories at previously inaccessible scales. From a long-term perspective, 10	

such information will improve our process-based understanding, inform our current suite of 11	

mechanistic models, and ultimately, better constrain future carbon cycle projections.  12	

Concluding remarks 13	

The strong El Niño event of 2015-2016 provided us with an opportunity to study how the 14	

global carbon cycle responds to changes in the physical climate system. With the high-resolution 15	

(both spatial and temporal) observations available from OCO-2, we are able to directly: (a) 16	

observe the strong correlations that exist between atmospheric CO2 concentrations and the El 17	

Niño signal, and (b) track the development of the atmospheric CO2 anomaly as it switches from a 18	

negative phase (i.e., due to a reduction in CO2 outgassing from the tropical Pacific Ocean) to a 19	

strong positive phase (i.e., due to a reduction in biospheric uptake and increased fire emissions). 20	

The most important contribution of the space-based OCO-2 mission is the ability to observe and 21	

monitor carbon cycle phenomena at high-density over large spatial scales, which has not been 22	

possible from the existing in situ network.  23	
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The complexity of the El Niño – CO2 signature illustrates that it is a multifaceted system 1	

with contributions from many regions and processes. Understanding and predicting its behavior 2	

requires separating out the many terrestrial and marine regions that contribute (1, 33) and 3	

identifying both the geophysical (3, 27, 30) and the biological (10, 59, 89) phenomena that 4	

respond in their own unique ways. However, the impact on the carbon cycle is unified through 5	

the global mixing of CO2 in the atmosphere - OCO-2 makes a unique contribution by providing 6	

both the global coverage and fine surface spatial detail; alongside the in situ CO2 network of 7	

moorings and shipboard measurements provide the long-term climate-quality record of 8	

atmospheric and ocean CO2 observations and serves to validate the OCO-2 observations and 9	

model products. We emphasize that this diverse observing portfolio is necessary, and the 10	

complementary information provided by these observing systems will likely prove critical in 11	

understanding the partitioning of carbon fluxes during the 2015-2016 El Niño, the relative 12	

contribution of ocean vs. land to the global atmospheric CO2 growth rate, and the sensitivity of 13	

the carbon cycle to climate forcing on interannual to decadal timescales.  14	
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Fig. 1. Schematic of the mechanistic differences between normal (A) and El Niño (B) conditions 1	

and associated carbon response over the tropical Pacific Ocean. Warm ocean surface 2	

temperatures are denoted in red and cooler waters in blue. During El Niño conditions, easterly 3	

trade winds weaken and westerly wind bursts occur. In association with the shift in wind 4	

regimes, the western tropical Pacific warm pool moves eastward and the slope of the thermocline 5	

flattens in the central and eastern tropical Pacific. This suppresses upwelling of cold, carbon-rich 6	

waters in the central and eastern tropical Pacific, reducing the magnitude of CO2 outgassing into 7	

the atmosphere. Also shown are changes in atmospheric convection, wherein convection shifts 8	

eastward in response to eastward displacement of western tropical Pacific warm pool waters.   9	
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Fig. 2. OCO-2 observes the response of the carbon cycle for an entire El Niño event. Temporal 1	

evolution of (A) the 2015-2016 El Niño as captured by the ONI and the SOI indices, (B) XCO2 2	

anomalies and associated uncertainties in the Niño 3.4 region, (C) ΔpCO2 from the TAO 0°, 3	

170°W mooring, and (D) the CO total column anomalies in the Niño 3.4 region.   4	
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Fig. 3. Schematic showing the specific ocean basins (Niño 3.4, N. Pacific, S. Pacific and Trop. 1	

Atlantic) that were analyzed in this study. XCO2 anomalies are calculated for these different ocean 2	

basins, and subsequently compared to the XCO2 anomalies from the Niño 3.4 region. Each of 3	

these regions was considered to accept/reject a specific hypothesis that could potentially bias the 4	

observed trend in the Niño 3.4 XCO2 anomalies. After rejecting these hypotheses, we conclude 5	

that the negative XCO2 anomaly observed over the Niño 3.4 during the onset phase of El Niño 6	

2015-2016 is unique and has to be driven by local changes in the ocean fluxes.  7	
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Fig. 4. Difference in XCO2 anomalies between the Niño 3.4 region and (A) the globe, (B) the 1	

tropical Atlantic Ocean, (C) the subtropical Pacific Ocean from September 2014 to May 2016. 2	

Definitions of the regions are provided in Fig. 3. In Panel (A), we see a robust pattern of negative 3	

XCO2 anomaly between Niño 3.4 and the globe that is largest in 2015 and well synchronized with 4	

the onset phase of El Niño. In Panels (B) and (C), non-zero differences between Niño 3.4 and the 5	

other ocean basins indicate that the Niño 3.4 trend is not reproducible in other ocean basins; thus, 6	

allowing us to attribute the negative anomaly in Fig. 2B to a reduction in local CO2 outgassing 7	

over the tropical Pacific Ocean.   8	
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Fig. 5. Time evolution of the XCO2 anomalies (ppm) averaged over 5°S-5°N. The x-axis 1	

represents longitude and the y-axis shows the time progressing from top to bottom in months. 2	

The 2015-2016 El Niño event and its onset and mature phases are highlighted to show the 3	

distinct responses observed over the tropical Pacific Ocean. The grey dashed lines capture the 4	

boundaries of the Niño 3.4 region. During the onset phase (i.e., March – July 2015), perceptible 5	

gradients are observable from the far western Pacific to the central Pacific (consistent with the 6	

increasing flux from west to east) along with high variability in the XCO2 anomalies in the central 7	

Pacific. We also notice that the XCO2 anomalies are smaller over the eastern Pacific, which is 8	

consistent with surface seawater pCO2 data collected on the TAO buoys (92). The transition 9	

from the ocean to the terrestrial signal happens between July and October 2015. Towards the 10	

latter stages of the El Niño event (i.e., November 2015 and later), the terrestrial signal dominates 11	

the observed trends in XCO2 likely masking any underlying ocean signal.   12	
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Materials and Methods 1	

XCO2 retrievals from OCO-2 and GOSAT-ACOS 2	

OCO-2 is NASA’s first dedicated satellite mission for measuring column average, 3	

atmospheric carbon dioxide (CO2) dry air mole fraction (XCO2) with the accuracy, resolution, and 4	

coverage needed for quantifying CO2 fluxes (sources and sinks) on regional scales over the globe 5	

(69, 94-95). Over the sunlit hemisphere, the OCO-2 mission collects nearly one million 6	

soundings per day (24 soundings/second) at approximately 3km2 nadir resolution. After cloud 7	

and aerosol screening, between 7 and 12% of these soundings yield full-column estimates of CO2 8	

on monthly timescales (96-97).  9	

The OCO-2 observing strategy (nadir/glint modes) has been refined over the first two 10	

years of operations to improve the measurement coverage and yield, especially over the ocean. 11	

The initial observing strategy recorded only glint or nadir observations over the entire sunlit 12	

hemisphere for a complete, 16-day, ground-track repeat cycle, and then used the other observing 13	

mode in the next 16-day cycle. This approach provided adequate coverage of oceans and 14	

continents on monthly timescales. In July 2015, this observation strategy was modified to 15	

alternate between glint and nadir observations on alternate orbits to yield more continuous 16	

coverage of the entire sunlit hemisphere every day. In November 2015, the observation strategy 17	

was further optimized to always-collect glint data on orbits that were primarily over the ocean. 18	

The XCO2 retrievals used in this work are based on the version 7B (v7B) Level 2 19	

algorithm. These data are freely available via the Goddard Earth Sciences Data and Information 20	

Services Center (GES-DISC) from the start of mission operation. OCO-2 results are also being 21	

cross-calibrated and cross-validated with measurements and data products from the Japanese 22	

Greenhouse gases Observing SATellite (GOSAT, nicknamed "Ibuki"), so that these two satellite 23	
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datasets can be combined to produce a uniform XCO2 climate data record for use by the carbon 1	

cycle science community. The GOSAT XCO2 retrievals used in this study have been generated by 2	

version 7.3 (v7.3) of the ACOS algorithm (GOSAT-ACOS, 98-99). Only the high (H) gain 3	

observations are retained from the GOSAT-ACOS dataset. These data are bias-corrected using 4	

the same predictors as those used for the OCO-2 v7B dataset. 5	

The XCO2 estimates have been validated against results from the Total Carbon Column 6	

Observing Network (TCCON) and other standards to assess their accuracy and correct regional 7	

scale biases (71, 100). After bias correction and data screening, the median residual bias between 8	

OCO-2 and TCCON XCO2 estimates are less than 0.5 ppm while the root-mean-square (RMS) 9	

differences between the two estimates are typically less than 1.5 ppm (71). Direct validation of 10	

the OCO-2 XCO2 estimates against TCCON sites has only revealed biases beyond 2 ppm for 11	

some months at Wollongong, Australia (34°S), whereas Ascension Island (10°S in the Atlantic 12	

Ocean) has not revealed any noticeable biases. Since there are no TCCON stations in the tropical 13	

Pacific Ocean, we must infer the quality of the ocean data from these validation sites in other 14	

ocean basins. The OCO-2 team has also noticed errors in the data over the Southern Hemisphere 15	

ocean that have a seasonal dependency. Those data are screened out using an airmass-dependent 16	

filter (70). Because the evaluation of systematic errors in these satellite retrievals is currently the 17	

subject of active research, we have carried out additional sensitivity tests (Section C) to ensure 18	

that these errors do not impact the findings in this study.  19	

Typically, the XCO2 retrievals are only performed on scenes nearly devoid of cloud and/or 20	

optically thick aerosol. Because of this, ENSO-induced changes in cloud patterns may cause 21	

slight changes in the locations of OCO-2 measurements, but are not expected to induce 22	

additional biases in these measurements. We find that the retrieval algorithm sees enough clear-23	
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sky scenes to consistently generate an adequate number of high-quality soundings for the entire 1	

time period of this study. For a typical month (e.g., August 2015), we find that GOSAT-ACOS 2	

returns ~10K “good-quality” soundings while OCO-2 returns ~150K “good-quality” soundings 3	

globally. For OCO-2, 60% of the retrieved soundings are ocean glint observations. Thus, in 4	

August 2015, the total number of ocean glint soundings is ~96K. Both of these space-based 5	

missions provide significantly more coverage over the tropical Pacific Ocean relative to the 6	

sparse in situ monitoring network (Fig. S1). In fact, it is the continuous coverage from GOSAT 7	

and OCO-2 that allows us to generate a time series of XCO2 over the tropical Pacific Ocean (Fig. 8	

S2) – for each month between June 2009 – May 2016 individual good-quality ocean glint 9	

soundings over the entire Niño 3.4 region are aggregated to generate a single monthly XCO2 10	

estimate over Niño 3.4.   11	
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Generation of XCO2 anomalies 1	

The time-series of XCO2 (and in general, time-series of atmospheric CO2 concentrations) 2	

exhibit both a linear trend and a cyclo-stationary component due to the seasonal cycle (Fig. S2). 3	

To account for the seasonality and the upward trend of CO2, we have adopted a two-step 4	

approach: (1) for each month, all XCO2 retrievals from GOSAT-ACOS and OCO-2 are averaged 5	

over pre-specified domains (e.g., Niño 3.4, tropical Pacific Ocean, tropical Atlantic Ocean, 6	

global) assuming no temporal correlation between months, and (2) for an individual month, say 7	

August, we find a linear trend that best fits the XCO2 data from 7-years of GOSAT-ACOS and 8	

OCO-2 observational record for that month, i.e., find the linear trend for August 2009, August 9	

2010, August 2011, August 2012, August 2013, August 2014, August 2015. Residuals from this 10	

linear trend (Fig. S3) are the XCO2 anomalies that will be analyzed. Note that the first derivative 11	

of the trend (slope of the linear regression line) provides an estimate of the monthly XCO2 growth 12	

rate. Simply comparing the growth rate values with those reported in previous studies delivers a 13	

necessary (but not sufficient) sanity check of our methodological framework. We have also 14	

explored the sensitivity of our calculated anomalies with respect to existing fitting methods 15	

(Section B, Fig. S5) and did not see any significant impact on our findings. 16	

Mathematically, if 𝑒"#,%& represents the monthly XCO2 anomalies for a given year, then 17	

these are derived from Equation S1: 18	

𝑒"#,%& = 𝑦"#,%& − 𝑦"#,%& = 𝑦"#,%& − ∝"#	+	𝛽"#𝑥%&  … Equation S1 

where, 𝑦"#,%&= observed monthly XCO2 value for a given year, 𝑥%& = 1,…, 7 for the 7 years, and 19	

𝛼 and 𝛽 are the intercept and slope parameters that are estimated during the linear regression 20	

procedure. From a physical standpoint, 𝛽"# represents the monthly XCO2 growth rate (ppm yr-1) 21	

and 𝛼"# represents the monthly XCO2 offset (ppm) relative to the start of our analyses period in 22	
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2009. This approach provides the flexibility of calculating the linear trend over any spatial 1	

domain – for example, globally, or over the entire tropical Pacific Ocean or separately for 2	

individual Niño regions. On monthly timescales, we do find slight differences in growth rates 3	

between the entire tropical Pacific Ocean and individual Niño regions – typically these 4	

differences are on the order of 0.01-0.2 ppm yr-1. On average the global growth rates vary 5	

between 1.88-2.37 ppm yr-1 depending on the season. These numbers are consistent with 6	

previous studies (101-102) that have attempted to derive space-based XCO2 growth rate over 7	

various spatial domains (e.g., global vs. Northern Hemisphere vs. Southern Hemisphere).  8	

Due to the short time series of the OCO-2 record, we had to rely on the GOSAT-ACOS 9	

dataset to provide a climatological reference. While care was taken to use XCO2 that are based on 10	

the same retrieval algorithm (OCO-2 v7B and GOSAT-ACOS v7.3), we recognize that stitching 11	

together data from two different instruments, i.e., GOSAT- and OCO-2 involves an implicit 12	

change in sampling strategy plus changes in observational density. Within the atmospheric trace 13	

gas remote-sensing community, this is a strategy that has been employed for generating 14	

climatologies from data available over a limited timespan – a typical example being the 15	

generation of ozone climatology using profile data from ozonesondes, observations from 16	

multiple satellite instruments, etc. (103-105). Section C discusses the sensitivity tests we have 17	

carried out to confirm that the derived XCO2 anomalies are not being impacted due to this 18	

‘change of instrument’ issue. In the future, as the OCO-2 data record grows, we will able to 19	

revise the climatology based on a homogenous XCO2 record, either from actual OCO-2 data or 20	

quasi-operational Level-3 maps (106) that will be made available as part of the OCO-2 product 21	

suite.   22	
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pCO2 observations from the TAO array 1	

The TAO (Tropical Atmosphere Ocean) array of moored buoys in the tropical Pacific 2	

Ocean provides real-time, in situ meteorological and oceanographic measurements (72). 3	

Atmospheric and surface seawater partial pressure of CO2 (pCO2) is currently measured by 4	

Moored Autonomous pCO2 (MAPCO2) systems maintained on the TAO array at 0°, 110°W; 0°, 5	

125°W; 0°, 140°W; 0°, 155°W; 0°, 170°W; 0°, 165°E; and 8°S, 165°E (38).  6	

In brief, the MAPCO2 system (39) utilizes an automated equilibrator-based gas collection 7	

system to measure surface seawater xCO2 (the mole fraction of CO2 in air in equilibrium with 8	

surface seawater) at approximately 14 cm depth and atmospheric xCO2 at approximately 1.5 m 9	

above the sea surface every 3 hours. This xCO2 (wet) measurement is made by a non-dispersive 10	

infrared gas analyzer (LI-820, LI-COR) calibrated before, during, and after field deployment 11	

with reference gases traceable to World Meteorological Organization standards prepared by 12	

NOAA’s Earth System Research Laboratory. The MAPCO2 system also measures sample 13	

temperature, pressure, and relative humidity to calculate xCO2 (dry) based on the equations in 14	

(107). Sea surface temperature (SST) and salinity from TAO temperature and conductivity 15	

sensors are then used to calculate pCO2 consistent with ocean carbon standard operating 16	

procedures as described in (39). 17	

Once data are recovered from the field and quality controlled, 3-hourly CO2 observations 18	

are archived at the Carbon Dioxide Information Analysis Center 19	

(http://cdiac.ornl.gov/oceans/Moorings/) and the National Centers for Environmental 20	

Information (https://www.ncei.noaa.gov/). Monthly averaged real-time observations of ∆pCO2 21	

(seawater pCO2 – atmospheric pCO2) from September 2014 – May 2016 are shown in Fig. 2C 22	

and Table S1. Quality control checks on the pCO2 observations reveal good measurements were 23	
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collected during this time period. Based on laboratory tests at NOAA Pacific Marine 1	

Environment Laboratory (PMEL) and field intercomparisons, estimates of uncertainty for 2	

quality-controlled air and seawater pCO2 measurements are ≤2 µatm (39); however, uncertainty 3	

of preliminary monthly-averaged data are likely slightly higher (≤5 µatm). Data plots from all 4	

TAO pCO2 locations, which include both real time and finalized data, are available at - 5	

www.pmel.noaa.gov/co2/story/Open+Ocean+Moorings.  6	

Figure 2C captures the temporal trend in the ΔpCO2 values from the 0°, 170°W TAO 7	

array buoy, which is located in the western-most portion of the Niño 3.4 region. Preliminary 8	

analyses seem to suggest that this buoy registered the first response to the onset of El Niño 9	

conditions. On the other hand, observations at 0°, 110°W from the TAO array buoy 10	

(https://www.pmel.noaa.gov/co2/story/Open+Ocean+Moorings) seem to indicate that upwelling 11	

of high dissolved inorganic carbon (DIC) water continued in the central and eastern-most portion 12	

of the Niño 3.4 region till early Fall 2015 with only brief periods (November 2015 – February 13	

2016) where surface seawater pCO2 was close to equilibrium with atmospheric values. 14	

Observations from these more eastern sites indicate diverse regimes operating across the tropical 15	

Pacific; Fig. 5 qualitatively demonstrates that the XCO2 anomalies capture these regional 16	

gradients depending on its magnitude, seasonality, location, etc. As more in situ measurements 17	

become available, quantitative investigations are ongoing to check how well the OCO-2 18	

observations can resolve such regional gradients.  19	
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CO observations from the MOPITT instrument 1	

Since March 2000, the MOPITT instrument on board the NASA/EOS Terra platform has 2	

been monitoring the CO content in the troposphere. Details about the retrieval algorithm, its 3	

validation and uncertainties are provided in Deeter et al. (108, 112-113) and Emmons et al. (109) 4	

while analyses and discussion of decadal CO trends are provided in more recent studies (110-5	

111). An instrument cooler failure between May and August 2001 significantly impacted the 6	

retrieval mean levels before and after the instrument anomaly. Hence for the sake of 7	

homogeneity, we select data during the period June 2002 - May 2016 for generating a 8	

climatological value of CO content in the atmosphere. Unlike the shorter XCO2 record, the 9	

availability of a long and homogeneous CO data record (>14 years) from a single instrument 10	

makes the generation of the climatology (and associated anomaly calculations) straightforward. 11	

Based on the recommendation of the MOPITT team, we use the Level 3 MOPITTv6 CO (112) 12	

estimated from the thermal-infrared (TIR) channel. TIR measurements offer the best description 13	

of CO emissions from fires due to the large thermal contrast between the lower troposphere and 14	

free troposphere due to intense surface heating. For this study, we look at the CO Volume 15	

Mixing Ratio (VMR) for both the total column and at an individual atmospheric pressure level at 16	

700 hPa.  17	

Given that the two largest surface sources of CO are the combustion of fossil fuel and the 18	

combustion of biomass (forest and savanna fires, biofuel use, and waste burning), MOPITT CO 19	

anomalies have been used to track emission from fires, including El Niño-related ones (114-20	

117). While the surface level anomalies can detect the onset of fires immediately (i.e., without 21	

any time lag), CO anomalies at higher levels in the atmosphere increase gradually and exhibit 22	

significantly smaller peak anomaly values than the surface. These features are consistent with the 23	
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expected lag and dilution associated with vertical mixing. Fig. S4 shows that the impact of fire 1	

emissions between August and October 2015 from S.E. Asia/Indonesia are clearly visible over 2	

the tropical Pacific Ocean. The largest anomalous sources of CO occur over the Indonesian 3	

regions, which are emitted as strong pulses over the 3-month window. These maps also rule out 4	

biomass burning emissions from other regions, such as Africa and South America that can 5	

potentially influence the rise in CO and CO2 concentrations over our region of interest (i.e., Niño 6	

3.4).   7	

Because the signal from enhanced fire emissions are correlated with drought, however, 8	

we cannot quantitatively discriminate the relative roles of reduction in biospheric uptake due to 9	

warmer, drier climates or emissions from biomass burning by just looking at the trends in the 10	

anomalies in the CO2 and the CO data. What we can discern is the timing of the large tropical 11	

source (of which the biomass burning emissions are a major contributor) and its impact on the 12	

rise in CO2 concentration anomalies from August 2015 onwards.   13	



   
	

	 50 

Supporting Text 1	

Section A: Calculation of sea-to-air fluxes from the TAO and the OCO-2 datasets 2	

Calculation of sea-to-air flux from pCO2 observations 3	

Following Wanninkhof (118), the net flux of CO2 across the air-sea interface, F (mass 4	

area-1 time-1) is calculated as the product of the gas transfer velocity k (length time-1), the 5	

solubility of CO2, s (mass volume–1 pressure–1), and the pCO2 (pressure) difference between the 6	

ocean and atmosphere (pCO2
sw – pCO2

atm), according to Equations S2 and S3:  7	

𝐅 = 𝐤𝐬 𝑝CO678 − 𝑝CO69:;  … Equation S2 

𝐤 = 0.251𝐔BC6 𝑆E 660 GC.H … Equation S3 

where, Sc is the Schmidt number for CO2, and U10 is the wind speed at 10m height. By 8	

convention, the units of k are in cm h-1, U10 is in m s-1 and units of the coefficient 0.251 are (cm 9	

h-1) (m s-1)-2. Daily averaged wind speeds were acquired from the Modern-Era Retrospective 10	

analysis for Research and Applications, Version 2, or MERRA-2 (119).  11	

Based on these equations, the calculated fluxes at TAO 0°, 170°W are 0.21 ± 0.20 (1σ) 12	

gC m-2 month-1 between April 2015 – March 2016 (i.e., during the El Niño 2015-2016 event). 13	

This is a flux reduction of 84% relative to the neutral April 2014 – March 2015 period during 14	

which the magnitude of flux was 1.35 ± 0.20 (1σ) gC m-2 month-1. Note that this flux difference 15	

is only representative of the western-most portion of the Niño 3.4 region. The CO2 fluxes and the 16	

magnitude of flux reduction could be considerably different in the eastern-most portions of the 17	

tropical Pacific Ocean. Studies reporting on the magnitude of air-sea flux reduction across the 18	

tropical Pacific Ocean during El Niño events typically report a flux reduction of ~40-60%. 19	

 20	
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Calculation of sea-to-air flux from XCO2 observations 1	

Following Gurney et al. (120), we have used simple atmospheric transport model 2	

simulations to assess whether the magnitude of ocean flux anomaly based on the pCO2 3	

observations is consistent with the anomaly observed in the XCO2 estimates. For the 16 models 4	

participating in the TransCom3 Level 1 experiment (T3L1) (121), we have calculated the 5	

average column mean CO2 enhancement over the Niño 3.4 region for the Eastern Equatorial 6	

Pacific basis function (region 14) fluxes. As per the TransCom experiment protocol, the fluxes 7	

for this basis function was set to a constant 1 PgC yr-1 evenly distributed within the region. These 8	

data are precomputed and available as part of the TransCom 3 experiments at - 9	

http://transcom.project.asu.edu/transcom03_output.php. The average difference between Niño 10	

3.4 region and a global reference column mean is 0.43 ± 0.09 (1σ) ppm. The global reference is 11	

based on a latitudinal cutoff of 60°S-60°N keeping in mind the range of latitudes over which 12	

OCO-2 observations are available. Since the basis function used in these experiments was 1 PgC 13	

yr-1 constant emission, this gives a sensitivity of 1/0.43 = 2.33 PgC yr-1 per ppm, or for a 0.26 ± 14	

0.09 (1σ) ppm dip (as seen from Fig. 4A over May, June, July, August 2015) about 0.60 ± 0.21 15	

(1σ) PgC yr-1. Given that the dip in XCO2 anomalies are observed over a period 4 months long 16	

(Fig. 4A), this would suggest a total flux of 0.20 ± 0.07 (1σ) PgC. As per the TransCom 17	

framework, note that this is an implied flux difference, in PgC absolute. Thus, if the original 18	

magnitude of sea-to-air flux is 0.5 PgC yr-1 (36), then the implied reduction in the flux 19	

outgassing is 0.2/0.5 * 100 = 40 ± 14 (1σ) % (i.e., 26-54%). This simple but effective calculation 20	

provides a necessary sanity check on the magnitude of the signal observed from the XCO2 data.  21	

In reality, the changes in the surface fluxes are far more complicated with processes 22	

occurring at distinct spatiotemporal scales and with different levels of maturity. The simple 23	
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analysis presented here does not take into account spatial gradients in fluxes within the east 1	

equatorial Pacific region itself or between the east and west tropical Pacific Ocean, all of which 2	

may have been possible for the 2015-2016 El Niño event. More detailed analyses using 3	

atmospheric inverse modeling/data assimilation techniques and both satellite and in situ data are 4	

necessary (and ongoing) to parse out the grid-scale air-sea flux magnitudes over the tropical 5	

Pacific Ocean.   6	



   
	

	 53 

Section B: Analyzing the sensitivity of XCO2 anomalies to the curve fitting procedure 1	

 Pickers and Manning (122) discuss that significant bias and uncertainty can be introduced 2	

in the application of curve fitting programs to atmospheric time series. The specific curve fitting 3	

method used in this study was designed keeping in mind the attributes of atmospheric CO2 4	

concentrations (i.e., both long-term growth rate and seasonal cycle). In principle, the overall 5	

framework is analogous to the one currently used at NOAA (‘CCGCRV’) to fit observation time 6	

series from the NOAA in situ network. Originally based on Thoning et al. (123), the CCGCRV 7	

curve fitting method represents the long-term growth rate by a polynomial function, the annual 8	

oscillation by harmonics of a yearly cycle and then uses a low pass filter to retain interannual and 9	

short term variations in the fitted curve. There is no set rule on the number of polynomial terms 10	

in the function, and it depends on the application and user preference.  11	

We have used the CCGCRV curve fitting method to detrend our XCO2 time series, and re-12	

calculated the anomalies and the growth rates (Fig. S5). A simple linear term was used for the 13	

polynomial part of the function to make the overall function as comparable as possible to our 14	

curve fitting method. We find that the overall pattern in the XCO2 anomalies (negative anomaly 15	

during Summer 2015 followed by a positive anomaly in Fall 2015) is consistent for both 16	

methods. This implies that the curve fitting procedure did not introduce any spurious bias or 17	

trend onto our analyses.    18	
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Section C: Uncertainty analyses for the trend in XCO2 anomalies 1	

 An ensemble approach is used to quantify the error associated with the time series of the 2	

Niño 3.4 XCO2 anomaly. Fig. S6 shows specific tracks that GOSAT flies over, and only 6 of 3	

those tracks lie within the Niño 3.4 region. We create an ensemble of small regions that are 4	

roughly 200 km x 400 km around those individual GOSAT tracks. For each of these regions (30 5	

in total), we apply the same methodology to generate the XCO2 climatology and extract the 6	

associated anomaly for our study time period (September 2014 – May 2016). The resultant 7	

spread among the 30 ensemble members defines the 1σ standard deviation for the mean XCO2 8	

anomaly line (Fig. 2B), which is still derived from the full Niño 3.4 region.  9	

We have carried out an additional sensitivity test (Fig. S7) where we have systematically 10	

added/subtracted constant mean bias values (0.1-1ppm) to the ocean glint retrievals used in this 11	

study. Given the lack of validation data over the tropical Pacific Ocean, it is necessary to 12	

ascertain that residual systematic errors in the ocean glint retrievals (71, 100) do not alias onto 13	

our calculations. Fig. S7 illustrates that even in the worst-case scenario, where the ocean glint 14	

retrievals have a low bias (i.e., negative) of 1 ppm, the overall temporal structure of the XCO2 15	

anomaly is conserved. The impact on the XCO2 anomaly line is that it shifts up or down 16	

depending on the magnitude of the bias, which in turn impacts the inference of the magnitude of 17	

the air-sea fluxes. Certainly, a more complicated structure of the residual biases (e.g., coherent 18	

spatial and temporal dependency or correlations between biases) will impact these trends in a 19	

different manner. But based on our current understanding of the satellite retrievals, these 20	

sensitivity tests and the ocean basin-related diagnostics (Figs. 3 and 4) show that the findings are 21	

robust to a couple of first order caveats that have not been resolved for the global OCO-2 dataset 22	

as a whole.  23	
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Section D: Cross-correlation between XCO2 anomalies and SST anomalies 1	

 We have investigated the cross-correlation between the XCO2 anomalies and the ONI 2	

index (which are derived from the Niño 3.4 SST anomalies) for the entire period of June 2009 – 3	

May 2016 (n=84) to test the magnitude and phase of the relationship between the two variables. 4	

The largest correlations are found for XCO2 anomalies lagging the ONI by 1-2 months (Fig. S8). 5	

These correlations are significant at the 95% level based on the random phase test of Ebisuzaki 6	

(124). Previous studies (6, 13, 14, 31) have looked at carbon cycle related anomalies (i.e., 7	

anomalies in CO2 concentrations or CO2 fluxes) and tested its phasing and strength with a suite 8	

of ENSO indices (e.g., SOI, Niño 3 SST anomalies, etc.). Jones et al. (14) provides the closest 9	

analogy to this work, where they reported a lag of 3 months between the CO2 concentrations 10	

measured at Mauna Loa and Niño 3 (5°S-5°N, 90°W-150°W) SST anomalies.  11	

We believe that the longer response time of the Mauna Loa CO2 anomalies to SST 12	

anomalies is not necessarily a feature of the carbon cycle but rather due to a time lag associated 13	

between the driver (SST) and the response (CO2) measured at a location far away from the center 14	

of action. The availability of XCO2 retrievals directly over the region of action (tropical Pacific 15	

Ocean and the Niño 3.4 region) provides a new tool for understanding both the strength of 16	

correlation of atmospheric CO2 changes with ENSO and the real-time lag associated with the 17	

ocean carbon cycle response.   18	
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Supporting Figures and Tables 1	

 2	

Fig. S1. Coverage over the Pacific Ocean from GOSAT-ACOS v7.3 (magenta) and OCO-2 v7B 3	

(gold) for one representative month in 2015. Relative to GOSAT, OCO-2 provides more 4	

observations over the open ocean (~100x more soundings per day) with higher accuracy and 5	

precision. Also shown are the Niño regions over the tropical Pacific Ocean that are traditionally 6	

used to study and define El Niño events.   7	
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   1	

Fig. S2. Time-series of XCO2 over the Niño 3.4 region for seven years (June 2009 – May 2016) 2	

after combining the GOSAT and the OCO-2 data streams. The availability of space-based 3	

observations over remote locations, such as the Niño 3.4 region, allows us to stitch together a 4	

long-time series of XCO2 concentrations from which the XCO2 anomalies can be deduced (Fig. 5	

S3). Grey-hatched portions indicate time-periods during which data is not available over the 6	

Niño 3.4 region (July 2011, June 2012 – July 2012 and June 2014)– either due to instrument 7	

downtime or planned maintenance.   8	
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  1	

Fig. S3. Multi-year time series of XCO2 anomalies over the Niño 3.4 region. The timespan covers 2	

June 2009 to May 2016. Grey-hatched portions indicate time-periods during which data is not 3	

available over the Niño 3.4 region (July 2011, June 2012 – July 2012 and June 2014)– either due 4	

to instrument downtime or planned maintenance. The horizontal brown lines indicate the range 5	

of uncertainty (± 0.5 ppm) expected in the XCO2 data. The vertical dashed red line shows the time 6	

period from which a subset of this time series (September 2014 to May 2016) has been explored 7	

in detail in this study. Comparison to previous years illustrates, however, that the anomaly 8	

signature observed during the 2015-2016 period are distinct relative to other periods.   9	
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 1	

Fig. S4. Spatial distribution of CO total column anomalies retrieved from the MOPITT 2	

instrument between August and October 2015. The red rectangle shows the location of SE Asia 3	

and Indonesia. Note the spike in CO anomalies during September 2015 due to the Indonesian 4	

peat fires, and subsequent advection (visible as a yellow blob) eastward across the tropical 5	

Pacific Ocean and westward over the tropical Indian Ocean. The peak values of CO anomalies 6	

occur during October 2015, which is also evident from the time series in Fig. 2D.   7	
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 1	

 Fig. S5. Time series of XCO2 anomalies generated by two different curve-fitting methods – the 2	

procedure used in this study (blue line with diamonds) and the traditional ‘CCGCRV’ procedure 3	

(orange line with stars). Both methods generate similar trends in the anomaly during the onset 4	

phase (i.e., negative anomaly in XCO2) and the mature phase of El Niño (i.e., steep increase in 5	

XCO2 anomaly). However, we do note a systematic difference in the magnitude of the positive 6	

XCO2 anomaly (August – December 2015) likely due to the difference in the number of 7	

parameters used in the two curve-fitting procedures.   8	
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 1	

 Fig. S6. Schematic of the methodology used to generate an ensemble of boxes within the Niño 2	

3.4 domain. Each individual box is centered around a GOSAT track – this ensures that the spatial 3	

coverage provided by the two remote sensing missions (GOSAT and OCO-2) are roughly 4	

equivalent within the box, thus minimizing the impact of differences in sampling density 5	

between the two instruments.   6	
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Fig. S7. Uncertainty associated with the XCO2 anomaly time series given residual systematic 2	

errors in the ocean glint retrievals. A range of constant mean bias values from ± 0.1 to ± 1.0 ppm 3	

were added to the ocean glint retrievals from OCO-2, and the XCO2 anomaly re-calculated for 4	

each bias level. Even in the worst-case scenario (low 1 ppm bias over the tropical Pacific Ocean), 5	

the overall temporal structure of the ocean and the terrestrial responses are conserved. The 6	

magnitude of the XCO2 anomaly shifts upward or downward, which will have consequences for 7	

the inferred changes in ocean/land –atmosphere fluxes.     8	
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Fig. S8. Lag correlation of ONI against monthly XCO2 anomalies in the Niño 3.4 region. Lags 2	

less than 0 indicate a delay in the response of the XCO2 anomalies to the SST anomalies. The 3	

horizontal dashed green lines are based on a non-parametric test and indicate the correlation 4	

required to meet the 95% significance criteria.   5	
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Month Year Pressure 
(hPa) 

sw xCO2 
(µmol 
mol-1) 

air xCO2  
(µmol 
mol-1) 

SST 
(°C) 

SSS 
(psu) 

∆pCO2 
(µatm) 

10 2014 1008.4 475.0 397.5 28.42 35.31 74.3 
11 2014 1007.1 471.5 397.1 28.91 35.08 71.1 
12 2014 1005.7 469.3 397.5 29.12 34.72 68.5 
1 2015 1005.9 480.2 398.1 28.68 35.15 78.4 
2 2015 1006.5 483.0 397.9 28.50 35.18 81.3 
3 2015 1006.5 470.0 398.1 28.97 35.15 68.6 
4 2015 1006.7 458.6 397.1 29.59 35.07 58.7 
5 2015 1007.4 431.5 396.7 29.93 34.82 33.2 
6 2015 1006.1 409.8 396.7 30.18 34.54 12.5 
7 2015 1007.8 407.3 396.7 30.02 34.44 10.1 
8 2015 1007.1 402.6 396.5 30.36 34.38 5.8 
9 2015 1007.4 404.9 396.0 30.53 34.32 8.4 

10 2015 1007.7 402.5 395.6 29.87 34.23 6.5 
11 2015 1005.8 411.6 395.9 29.09 34.25 14.7 
12 2015 1006.9 400.0 399.0 30.52 34.12 0.9 
1 2016 1007.7 402.0 398.9 29.75 34.23 3.0 
2 2016 1007.2 409.5 398.4 29.76 34.34 10.5 
3 2016 1008.8 443.6 398.6 29.59 34.89 42.2 
4 2016 1008.7 476.6 399.8 28.85 35.12 73.6 
5 2016 1009.3 485.3 399.1 28.52 35.22 82.6 

 2	

Table S1. Monthly-averaged real time data from the TAO 0°, 170°W mooring used to calculate 3	

ΔpCO2. Monthly atmospheric pressure and seawater (sw) and air xCO2 values are averaged from 4	

3-hourly MAPCO2 data. Monthly SST and SSS values are averaged from daily-averaged 5	

National Data Buoy Center (NDBC) TAO CTD data (from: 6	

http://tao.ndbc.noaa.gov/tao/data_download/search_map.shtml). Note that the October 2014 7	

monthly average only includes data from 10/15/2014 - 10/31/2014; all other months include a 8	

full month of data. Surface CTD or real time data transmissions seemed to intermittently fail at 9	

this site between 11/16/2014 and 11/30/2015, and were replaced by data from the TAO 2°N, 10	

170°W mooring (during data overlap in the time series, TAO 2°N, 170°W SST and SSS were -11	

0.04±0.44 (1σ) and 0.16±0.18 (1σ), respectively, compared to 0°, 170°W).   12	
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